Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.908
Filtrar
1.
J Agric Food Chem ; 72(15): 8618-8631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569082

RESUMO

Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.


Assuntos
Isoflavonas , Pró-Fármacos , Ratos , Animais , Aminoácidos/química , Disponibilidade Biológica , Solubilidade , Pró-Fármacos/química , Carbamatos/química , Água , Administração Oral
2.
Int J Pharm ; 655: 124072, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38561133

RESUMO

We explored the potential of overcoming the dense interstitial barrier in pancreatic cancer treatment by enhancing the uptake of hydrophilic chemotherapeutic drugs. In this study, we synthesized the squalenoyl-chidamide prodrug (SQ-CHI), linking lipophilic squalene (SQ) with the hydrophilic antitumor drug chidamide (CHI) through a trypsin-responsive bond. Self-assembled nanoparticles with sigma receptor-bound aminoethyl anisamide (AEAA) modification, forming AEAA-PEG-SQ-CHI NPs (A-C NPs, size 116.6 ± 0.4 nm), and reference nanoparticles without AEAA modification, forming mPEG-SQ-CHI NPs (M-C NPs, size 88.3 ± 0.3 nm), were prepared. A-C NPs exhibited significantly higher in vitro CHI release (74.7 %) in 0.5 % trypsin medium compared to release (20.2 %) in medium without trypsin. In vitro cell uptake assays revealed 3.6 and 2.3times higher permeation of A-C NPs into tumorspheres of PSN-1/HPSC or CFPAC-1/HPSC, respectively, compared to M-C NPs. Following intraperitoneal administration to subcutaneous tumor-bearing nude mice, the A-C NPs group demonstrated significant anti-pancreatic cancer efficacy, inducing cancer cell apoptosis and inhibiting proliferation in vivo. Mechanistic studies revealed that AEAA surface modification on nanoparticles promoted intracellular uptake through caveolin-mediated endocytosis. This nanoparticle system presents a novel therapeutic approach for pancreatic cancer treatment, offering a delivery strategy to enhance efficacy through improved tumor permeation, trypsin-responsive drug release, and specific cell surface receptor-mediated intracellular uptake.


Assuntos
Aminopiridinas , Benzamidas , Nanopartículas , Neoplasias Pancreáticas , Pró-Fármacos , Animais , Camundongos , Caveolinas/uso terapêutico , Camundongos Nus , Tripsina , Nanopartículas/química , Pró-Fármacos/química , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
3.
Nat Commun ; 15(1): 2831, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565562

RESUMO

The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.


Assuntos
Compostos Heterocíclicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Cisteína , Sistemas de Liberação de Medicamentos
4.
Bioorg Med Chem Lett ; 104: 129729, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583786

RESUMO

Aptamers have shown significant potential in treating diverse diseases. However, challenges such as stability and drug delivery limited their clinical application. In this paper, the development of AS1411 prodrug-type aptamers for tumor treatment was introduced. A Short oligonucleotide was introduced at the end of the AS1411 sequence with a disulfide bond as responsive switch. The results indicated that the aptamer prodrugs not only enhanced the stability of the aptamer against nuclease activity but also facilitated binding to serum albumin. Furthermore, in the reducing microenvironment of tumor cells, disulfide bonds triggered drug release, resulting in superior therapeutic effects in vitro and in vivo compared to original drugs. This paper proposes a novel approach for optimizing the structure of nucleic acid drugs, that promises to protect other oligonucleotides or secondary structures, thus opening up new possibilities for nucleic acid drug design.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Pró-Fármacos , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos , Aptâmeros de Nucleotídeos/farmacologia , Dissulfetos/química , Linhagem Celular Tumoral
5.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560761

RESUMO

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Assuntos
Antineoplásicos , Fotoquimioterapia , Porfobilinogênio/análogos & derivados , Pró-Fármacos , Humanos , Boro/farmacologia , 60439 , Corantes , Pró-Fármacos/farmacologia , Cobalto/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Antineoplásicos/efeitos da radiação , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Oxigênio Singlete/metabolismo , Luz
6.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611899

RESUMO

2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of a wide substitution profile and to prepare the related S-oxides. The in vitro biological activity and selectivity of diarylideneacetones, 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones, and their S-sulfoxide and sulfone metabolites were evaluated against Trypanosoma brucei brucei, Trypanosoma cruzi, and various Leishmania species in comparison with their cytotoxicity against human fibroblasts hMRC-5. The data revealed that the sulfides, sulfoxides, and sulfones, in which the Michael acceptor sites are temporarily masked, are less toxic against mammal cells while the anti-trypanosomal potency was maintained against T. b. brucei, T. cruzi, L. infantum, and L. donovani, thus confirming the validity of the prodrug strategy. The mechanism of action is proposed to be due to the involvement of diarylideneacetones in cascades of redox reactions involving the trypanothione system. After Michael addition of the dithiol to the double bonds, resulting in an elongated polymer, the latter-upon S-oxidation, followed by syn-eliminations-fragments, under continuous release of reactive oxygen species and sulfenic/sulfonic species, causing the death of the trypanosomal parasites in the micromolar or submicromolar range with high selectivity indexes.


Assuntos
Doença de Chagas , Pró-Fármacos , Piranos , Safrol/análogos & derivados , Compostos de Sulfidrila , Humanos , Animais , Óxidos , Oxirredução , Mamíferos
7.
Bioconjug Chem ; 35(4): 551-558, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591781

RESUMO

Poly(ADP-ribose) polymerase inhibitors (PARPi) have been approved for once or twice daily oral use in the treatment of cancers with BRCA defects. However, for some patients, oral administration of PARPi may be impractical or intolerable, and a long-acting injectable formulation is desirable. We recently developed a long-acting PEGylated PARPi prodrug, PEG∼talazoparib (TLZ), which suppressed the growth of PARPi-sensitive tumors in mice for very long periods. However, the release rate of TLZ from the conjugate was too fast to be optimal in humans. We prepared several new PEG∼TLZ prodrugs having longer half-lives of drug release and accurately measured their pharmacokinetics in the rat. Using the rates of release of TLZ from these prodrugs and the known pharmacokinetics of free TLZ in humans, we simulated the pharmacokinetics of the macromolecular prodrugs and released TLZ in humans. From several possibilities, we chose two conjugates that could be administered intravenously every 2 weeks and maintain TLZ within its known therapeutic window. We describe situations where the PEG∼TLZ conjugates would find utility in humans and suggest how the intravenously administered long-acting prodrugs could in fact be more effective than daily oral administration of free TLZ.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Camundongos , Ratos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Pró-Fármacos/farmacologia , Neoplasias/tratamento farmacológico
8.
Int J Nanomedicine ; 19: 2807-2821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525014

RESUMO

Background: Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods: An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results: The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion: These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.


Assuntos
Nanopartículas , Fosfatidiletanolaminas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Portadores de Fármacos/química , Ácido Linoleico , Polietilenoglicóis/química , Nanopartículas/química , Movimento Celular , Proliferação de Células , Metilcelulose
9.
Clin Transl Sci ; 17(3): e13765, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511523

RESUMO

PF614, a trypsin-activated abuse protection oxycodone prodrug designed to reduce recreational drug abuse, was compared to OxyContin for safety and pharmacokinetics (PKs) of plasma oxycodone following oral administration. This study was a two-part design including a multi-ascending dose (part A) and a bioequivalence (BE) study (part B) in healthy volunteers. In part A, 24 subjects were randomized 3:1 to receive PF614 (50, 100, or 200 mg, n = 6/cohort) or OxyContin (20, 40, or 80 mg; n = 2/cohort) in ascending cohorts, delivered every 12 h for a total of nine doses. In part B, 60 subjects randomized in a four-way crossover to evaluate BE, received PF614 100 mg and OxyContin 40 mg in fasted and fed (high-fat diet) states. All subjects were naltrexone blocked prior to first study drug administration to protect against opioid-related adverse effects; repeat doses were provided on days 1-5. In part A, PF614 was well-tolerated following twice daily doses of up to 200 mg for 5 days. Plasma oxycodone maximal plasma concentration and area under the concentration time curve increased linearly with increasing doses. Part B showed that plasma oxycodone BE was achieved following 100 mg PF614 or 40 mg OxyContin under both fasted and fed conditions. Additionally, PF614 provided similar oxycodone exposures following both fasted and fed states. This study confirms findings from our single-ascending dose study, showing that PF614 100 mg releases oxycodone with a PK profile comparable to 40 mg OxyContin under both fasted and fed conditions and with a similar safety profile under naltrexone-blocked conditions.


Assuntos
Oxicodona , Pró-Fármacos , Humanos , Administração Oral , Analgésicos Opioides , Estudos Cross-Over , Voluntários Saudáveis , Naltrexona/efeitos adversos , Pró-Fármacos/efeitos adversos , Equivalência Terapêutica
10.
Eur J Pharmacol ; 970: 176482, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452835

RESUMO

Rotenone, a plant-based agricultural insecticide, has been shown to have anti-tumor activity through targeting mitochondrial complex I in cancer cells. However, off-target toxic side effect on nervous systems have greatly restricted the application of rotenone as anticancer drugs. Here, a folic acid-rotenol (FA-rotenol) conjugate was prepared by covalent coupling of the tumor-targeting ligand folic acid with rotenone derivative-rotenol to enhance its accumulation at tumor site. FA-rotenol conjugates present high in vitro cytotoxicties against several cell lines by inducing mitochondrial membrane potential depolarization and increasing the level of intracellular reactive oxygen species (ROS) to activate the mitochondrial pathway of apoptosis and enhance the G2/M cell cycle arrest. Because of the high affinity with over-expressed folate receptors, FA-rotenol conjugate demonstrated more effective in vivo therapeutic outcomes in 4T1 tumor-bearing mice than rotenone and rotenol. In addition, FA-rotenol conjugate can markedly inhibit the cell migration and invasion of HepG-2 cells. These studies confirm the feasibility of tumor-targeted ligand conjugated rotenone derivatives for targeted antitumor therapy; likewise, they lay the foundations for the development of other rotenol-conjugates with antitumor potential.


Assuntos
Antineoplásicos , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Ligantes , Rotenona/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
11.
J Med Chem ; 67(7): 5744-5757, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38553427

RESUMO

To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Tiossemicarbazonas , Humanos , Albumina Sérica Humana/química , Cobre/química , Albumina Sérica/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Indometacina/uso terapêutico , Microambiente Tumoral , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico
12.
J Nanobiotechnology ; 22(1): 109, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481326

RESUMO

BACKGROUND: Immunogenic cell death (ICD) is a crucial approach to turn immunosuppressive tumor microenvironment (ITM) into immune-responsive milieu and improve the response rate of immune checkpoint blockade (ICB) therapy. However, cancer cells show resistance to ICD-inducing chemotherapeutic drugs, and non-specific toxicity of those drugs against immune cells reduce the immunotherapy efficiency. METHODS: Herein, we propose cancer cell-specific and pro-apoptotic liposomes (Aposomes) encapsulating second mitochondria-derived activator of caspases mimetic peptide (SMAC-P)-doxorubicin (DOX) conjugated prodrug to potentiate combinational ICB therapy with ICD. The SMAC-P (AVPIAQ) with cathepsin B-cleavable peptide (FRRG) was directly conjugated to DOX, and the resulting SMAC-P-FRRG-DOX prodrug was encapsulated into PEGylated liposomes. RESULTS: The SMAC-P-FRRG-DOX encapsulated PEGylated liposomes (Aposomes) form a stable nanostructure with an average diameter of 109.1 ± 5.14 nm and promote the apoptotic cell death mainly in cathepsin B-overexpressed cancer cells. Therefore, Aposomes induce a potent ICD in targeted cancer cells in synergy of SMAC-P with DOX in cultured cells. In colon tumor models, Aposomes efficiently accumulate in targeted tumor tissues via enhanced permeability and retention (EPR) effect and release the encapsulated prodrug of SMAC-P-FRRG-DOX, which is subsequently cleaved to SMAC-P and DOX in cancer cells. Importantly, the synergistic activity of inhibitors of apoptosis proteins (IAPs)-inhibitory SMAC-P sensitizing the effects of DOX induces a potent ICD in the cancer cells to promote dendritic cell (DC) maturation and stimulate T cell proliferation and activation, turning ITM into immune-responsive milieu. CONCLUSIONS: Eventually, the combination of Aposomes with anti-PD-L1 antibody results in a high rate of complete tumor regression (CR: 80%) and also prevent the tumor recurrence by immunological memory established during treatments.


Assuntos
Complexos Multienzimáticos , Neoplasias , Oligopeptídeos , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Catepsina B , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/química , Imunoterapia , Neoplasias/tratamento farmacológico , Peptídeos , Polietilenoglicóis , Linhagem Celular Tumoral , Microambiente Tumoral
13.
Int J Biol Sci ; 20(5): 1634-1651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481819

RESUMO

Background: Hypoxia induces hepatocellular carcinoma (HCC) malignancies; yet it also offers treatment opportunities, exemplified by developing hypoxia-activated prodrugs (HAPs). Although HAP TH-302 combined with therapeutic antibody (Ab) has synergistic effects, the clinical benefits are limited by the on-target off-tumor toxicity of Ab. Here, we sought to develop a hypoxia-activated anti-M2 splice isoform of pyruvate kinase (PKM2) Ab combined with TH-302 for potentiated targeting therapy. Methods: Codon-optimized and hypoxia-activation strategies were used to develop H103 Ab-azo-PEG5k (HAP103) Ab. Hypoxia-activated HAP103 Ab was characterized, and hypoxia-dependent antitumor and immune activities were evaluated. Selective imaging and targeting therapy with HAP103 Ab were assessed in HCC-xenografted mouse models. Targeting selectivity, systemic toxicity, and synergistic therapeutic efficacy of HAP103 Ab with TH-302 were evaluated. Results: Human full-length H103 Ab was produced in a large-scale bioreactor. Azobenzene (azo)-linked PEG5k conjugation endowed HAP103 Ab with hypoxia-activated targeting features. Conditional HAP103 Ab effectively inhibited HCC cell growth, enhanced apoptosis, and induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) functions. Analysis of HCC-xenografted mouse models showed that HAP103 Ab selectively targeted hypoxic HCC tissues and induced potent tumor-inhibitory activity either alone or in combination with TH-302. Besides the synergistic effects, HAP103 Ab had negligible side effects when compared to parent H103 Ab. Conclusion: The hypoxia-activated anti-PKM2 Ab safely confers a strong inhibitory effect on HCC with improved selectivity. This provides a promising strategy to overcome the on-target off-tumor toxicity of Ab therapeutics; and highlights an advanced approach to precisely kill HCC in combination with HAP TH-302.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitroimidazóis , Mostardas de Fosforamida , Pró-Fármacos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Hipóxia
14.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484056

RESUMO

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Assuntos
Alanina , Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Nucleosídeos , Pró-Fármacos , Animais , Administração Oral , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Macaca fascicularis , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacologia
15.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473904

RESUMO

Cancer in dogs has increased in recent years and is a leading cause of death. We have developed a retroviral replicating vector (RRV) that specifically targets cancer cells for infection and replication. RRV carrying a suicide gene induced synchronized killing of cancer cells when administered with a prodrug after infection. In this study, we evaluated two distinct RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV) in canine tumor models both in vitro and in vivo. Despite low infection rates in normal canine cells, both RRVs efficiently infected and replicated within all the canine tumor cells tested. The efficient intratumoral spread of the RRVs after their intratumoral injection was also demonstrated in nude mouse models of subcutaneous canine tumor xenografts. When both RRVs encoded a yeast cytosine deaminase suicide gene, which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil, they caused tumor-cell-specific 5-FC-induced killing of the canine tumor cells in vitro. Furthermore, in the AZACF- and AZACH-cell subcutaneous tumor xenograft models, both RRVs exerted significant antitumor effects. These results suggest that RRV-mediated suicide gene therapy is a novel therapeutic approach to canine cancers.


Assuntos
Neoplasias , Pró-Fármacos , Camundongos , Humanos , Cães , Animais , Terapia Genética/métodos , Linhagem Celular Tumoral , Vírus da Leucemia do Macaco Gibão/genética , Fluoruracila/farmacologia , Flucitosina/farmacologia , Pró-Fármacos/farmacologia , Vetores Genéticos , Citosina Desaminase/genética , Neoplasias/tratamento farmacológico
16.
Adv Pharmacol ; 99: 251-286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467483

RESUMO

In this review, we critically evaluate the contribution of prodrugs to treating two related psychiatric disorders, attention-deficit hyperactivity disorder (ADHD) and binge-eating disorder (BED). ADHD is characterized by inattentiveness, distractibility, impulsiveness, and hyperactivity. BED is also an impulse-control disorder which leads to frequent, compulsive episodes of excessive eating (binges). Lisdexamfetamine (LDX; prodrug of d-amphetamine) is approved to treat both ADHD and BED. Serdexmethylphenidate (SDX; prodrug of d-threo-methylphenidate) is not clinically approved as monotherapy but, in a fixed-dose combination with immediate release d-threo-methylphenidate (Azstarys™), SDX is approved for managing ADHD in children/adolescents. The pharmacological actions of a stimulant mediate both its efficacy and side-effects. Therefore, daily management of ADHD or BED to maintain optimum efficacy and tolerability places highly restrictive requirements on the pharmacokinetic/pharmacodynamic (PK/PD) characteristics of stimulant medications, especially prodrugs. Prodrugs must have good bioavailability and rapid metabolism to provide therapeutic efficacy soon after morning dosing combined with providing stimulant coverage throughout the day/evening. A wide selection of dosages and linear PK for the prodrug and its active metabolite are essential requirements for treatment of these conditions. The proposed neurobiological causes of ADHD and BED are described. The chemical, pharmacological and PK/PD properties responsible for the therapeutic actions of the prodrugs, LDX and SDX, are compared and contrasted. Finally, we critically assess their contribution as ADHD and BED medications, including advantages over their respective active metabolites, d-amphetamine and d-threo-methylphenidate, and also their potential for misuse and abuse.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno da Compulsão Alimentar , Estimulantes do Sistema Nervoso Central , Metilfenidato , Pró-Fármacos , Adolescente , Criança , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno da Compulsão Alimentar/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Dextroanfetamina/uso terapêutico , Metilfenidato/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
17.
ACS Nano ; 18(11): 7852-7867, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437513

RESUMO

The clinical application of cisplatin (CisPt) is limited by its dose-dependent toxicity. To overcome this, we developed reduction-responsive nanoparticles (NP(3S)s) for the targeted delivery of a platinum(IV) (Pt(IV)) prodrug to improve efficacy and reduce the toxicity. NP(3S)s could release Pt(II) and hydrogen sulfide (H2S) upon encountering intracellular glutathione, leading to potent anticancer effects. Notably, NP(3S)s induced DNA damage and activated the STING pathway, which is a known promoter for T cell activation. Comparative RNA profiling revealed that NP(3S)s outperformed CisPt in enhancing T cell immunity, antitumor immunity, and oxidative stress pathways. In vivo experiments showed that NP(3S)s accumulated in tumors, promoting CD8+ T cell infiltration and boosting antitumor immunity. Furthermore, NP(3S)s exhibited robust in vivo anticancer efficacy while minimizing the CisPt-induced liver toxicity. Overall, the results indicate NP(3S)s hold great promise for clinical translation due to their low toxicity profile and potent anticancer activity.


Assuntos
Antineoplásicos , Pró-Fármacos , Pró-Fármacos/química , Cisplatino , Polímeros , Glutationa , Linhagem Celular Tumoral
18.
ACS Nano ; 18(11): 7945-7958, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452275

RESUMO

Ferroptosis is a form of regulated cell death accompanied by lipid reactive oxygen species (ROS) accumulation in an iron-dependent manner. However, the efficiency of tumorous ferroptosis was seriously restricted by intracellular ferroptosis defense systems, the glutathione peroxidase 4 (GPX4) system, and the ubiquinol (CoQH2) system. Inspired by the crucial role of mitochondria in the ferroptosis process, we reported a prodrug nanoassembly capable of unleashing potent mitochondrial lipid peroxidation and ferroptotic cell death. Dihydroorotate dehydrogenase (DHODH) inhibitor (QA) was combined with triphenylphosphonium moiety through a disulfide-containing linker to engineer well-defined nanoassemblies (QSSP) within a single-molecular framework. After being trapped in cancer cells, the acidic condition provoked the structural disassembly of QSSP to liberate free prodrug molecules. The mitochondrial membrane-potential-driven accumulation of the lipophilic cation prodrug was delivered explicitly into the mitochondria. Afterward, the thiol-disulfide exchange would occur accompanied by downregulation of reduced glutathione levels, thus resulting in mitochondria-localized GPX4 inactivation for ferroptosis. Simultaneously, the released QA from the hydrolysis reaction of the adjacent ester bond could further devastate mitochondrial defense and evoke robust ferroptosis via the DHODH-CoQH2 system. This subcellular targeted nanoassembly provides a reference for designing ferroptosis-based strategy for efficient cancer therapy through interfering antiferroptosis systems.


Assuntos
Ferroptose , Compostos Organofosforados , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Di-Hidro-Orotato Desidrogenase , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Dissulfetos/metabolismo
20.
Nano Lett ; 24(12): 3759-3767, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478977

RESUMO

Prodrug nanoassemblies are emerging as a novel drug delivery system for chemotherapy, comprising four fundamental modules: a drug module, a modification module, a response module, and a surface functionalization module. Among these modules, surface functionalization is an essential process to enhance the biocompatibility and stability of the nanoassemblies. Here, we selected mitoxantrone (MTO) as the drug module and DSPE-PEG2K as surface functionalization module to develop MTO prodrug nanoassemblies. We systematically evaluated the effect of surface functionalization module ratios (10%, 20%, 40%, and 60% of prodrug, WDSPE-mPEG2000/Wprodrug) on the prodrug nanoassemblies. The results indicated that 40% NPs significantly improved the self-assembly stability and cellular uptake of prodrug nanoassemblies. Compared with MTO solution, 40% NPs showed better tumor specificity and pharmacokinetics, resulting in potent antitumor activity with a good safety profile. These findings highlighted the pivotal role of the surface functionalization module in regulating the performance of mitoxantrone prodrug nanoassemblies for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Mitoxantrona , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...